Skip to content

Toggle service links

You are here

  1. Home
  2. Dr Helen Jane Fraser

Dr Helen Jane Fraser

Profile summary

  • Central Academic Staff
  • Senior Lecturer
  • Faculty of Science, Technology, Engineering & Mathematics
  • School of Physical Sciences
  • helen.fraser

Research Activity

Research groups

NameTypeParent Unit
Astronomy Research GroupGroupFaculty of Science
Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)CentreFaculty of Science

 

Externally funded projects

Consolidated Grant - Astronomy Observation and Astronomy Theory (AO & AT 2016)

RoleStart dateEnd dateFunding source
Co-investigator01/Apr/201731/Mar/2020STFC (Science & Technology Facilities Council)
Our research programme, Astronomy at the Open University, covers the breadth of cosmic evolution, from dark energy to the birth of planets. We do this research by observation, laboratory experiments, simulations and modelling. We use purpose-designed laboratories and instruments, and instruments on telescopes and spacecraft to make our observations and measurements. Our group is based in the Department of Physical Sciences at the OU. So what are we trying to find out? We have 8 separate projects, from exoplanets and stars to distant galaxies. We already know a lot about how the Solar System came about. The Sun and planets formed from a cloud of dust and gas about 4570 million years ago. The cloud collapsed to a spinning disk and dust and gas spiralled inwards. The core of the disk became hot, forming the Sun, while the leftover dust and gas formed the planets. Boulders gravitated together to make planets, but no-one knows how the dust grains became boulders. We are experimenting with colliding centimetre-sized particles in zero-gravity conditions to see if they stick together, to find the missing link in how planets form. We also look at processes that cause stars to change as they age. Only recently has it been recognised that so many stars are binary systems, where two or more stars are in close association and affect each others' motion. Such systems affect the way mass and energy is lost from a star, and how they are transferred into the interstellar medium. We will study how 'binarity' affects the behaviour of massive stars (>20 times the mass of the Sun) and low mass stars (< the mass of the Sun), and how star populations change as they age. Studying these effects is vital, because the environment of a star influences any planets that surround it. Many hundreds of planets have been discovered around other stars (exoplanets) and we are working to describe the range of properties of these planets, especially when they are located close to their central star. A star can even completely destroy a close-in exoplanet, which could be an important new source of dust in the nearby universe and even in distant galaxies in the early Universe. Also in the early Universe, we can use the way that galaxies warp space and time to learn about the dark matter that surrounds them, and the dark energy that drives them apart. What else do we do? We build and test instruments for ground-based telescopes and for space missions, striving to make them smaller and lighter, and explore how they can be used on Earth for medical or security purposes. One of the most important benefits of our research is that it helps to train and inspire students: the next generation of scientists and engineers. We also enjoy telling as many people as possible about our work, and what we have learned from it about our origins.

60 Second Adventures in Microgravity

RoleStart dateEnd dateFunding source
Co-investigator01/Nov/201531/Mar/2016UKSA UK Space Agency
What is microgravity? Why do scientists use it? Our overarching aim is to produce a series of short, humorous and factual videos, called "60 Second Adventures in Microgravity", aimed at a broad audience of children and adults, to enable them to understand why the UK is involved in microgravity research, what UK scientists do in microgravity research, and how this work benefits our everyday lives. The proposal is based on the OU 60 seconds series, produced by applicant Catherine Chambers, which has covered a number of subject areas. The series started with series of outstandingly successful animated short-form videos for the web - on the history of English, narrated by Clive Anderson, e.g. http://youtu.be/r9Tfbeqyu2U (600,000 hits on YouTube). This was followed by Sixty Second Adventures in Thought (see stills in additional material), narrated by the comedian David Mitchell, covering philosophical topics (see e.g. http://youtu.be/skM37PcZmWE, over 30,000 hits in just one month). Theseave more than three million views in total to date. More recently, this was extended to astronomy, planetary science and particle physics, again narrated by David Mitchell and funded by STFC. This work will build on this successful formula to generate a novel Sixty Second Adventures in Microgravity, promoting the interests of UKSA and the UK ELIPS scientific community to the general public. The remaining 3 applicants BR, SG and HJF all are involved in current ELIPS research projects. We propose to produce 4 episodes; Microgravity - what is it?: This first video will aim to explain to the audience, what microgravity is - starting from a sketch of the Earth with a cable going to a big switch, and flicking the switch (to switch gravity off) which makes everybody / everything float away. Obviously we cannot turn gravity off, but we need to recreate conditions of "free-fall" so that from the frame of reference within the "microgravity" environment can be recreated. The video will explain the ways we can do this, focusing on ground-based microgravity platforms. Parabolic Flights: fancy getting sick whilst doing your science? Hurtling towards the Earth in an aeroplane? That's what OU scientists do...How do we build planets? Scientists don't know, but they test how the building blocks of Solar systems form by having a great big, slow-motion snowball fight - OK not really - but they use microgravity platforms to collide ice particles with each other. These ELIPS based experiments show that "traffic jam" effects are more important in planet-forming disks than collisions themselves. This will be the one video based on existing OU expertise in ELIPS research. Understanding the aging population: Bed-rest is another way to exploit the "microgravity environment". Imagine sleeping almost upside down for 6 months and being paid for it... luxury - but why do scientists want people to do that? With an ever aging population, issues of poor blood circulation, osteoporosis and muscle wasting are important to understand so that we can maintain the health and wellbeing of the older generation (as well as medical rehabilitation patients e.g. long-term injury patients such as car-crash victims or members of the armed services). Cell Biology: Space might not be the first place to think about biology - given that it's a vast empty expanse of vacuum, and it's still not clear where life originates. But microgravity research shows us cells are pretty clever - they realise in microgravity there isn't an up or down, they change on a molecular level to adapt to the microgravity environment. The basic signalling systems in cell biology are the same systems that result in muscle degradation and cell changes in microgravity environments. And when one tests the resilience of microbes to the space environments - only those with certain genes and protein sequences survive...a kind of survival of the space fittest? And a clue where we come from? Perhaps.

IAU GA Honolulu 2015

RoleStart dateEnd dateFunding source
Lead01/Jun/201531/Oct/2016Royal Astronomical Society (RAS)
Financial support to enable my participation in the IAU General Assembly in Honolulu, Hawaii, USA, in August 2015. This meeting, held tri-annually to bring the worldwide astronomical community together.

Linking Solid-State Astronomical Observations and Gas-Grain Models to Laboratory Data

RoleStart dateEnd dateFunding source
Lead30/Jan/201531/Mar/2016STFC (Science & Technology Facilities Council)
In the regions of space where stars and planets form, chemistry also happens. In fact, molecules are a paramount tool in astronomy to enable us to extract the chemical and physical conditions in such regions, and therefore say something about how the processes of star and planet formation happen. Many of these molecules are generated through reactions in so-called ices, molecules that have frozen out onto the surfaces of small carbonaceous and silcaceous dust grains during the earliest stages of star-formation. As these astronomical regions evolve, the ices are processed, by heat and star-light, or even interaction with more atoms and molecules, until complex chemicals form. As the stars first start "shining" most of the ice material is converted back into gas, and we can then spot all these complex chemical species in the gas-phase using ground- and space-based telescopes such as ALMA, Herschel and IRAM. A key question for astronomers is to understand which molecules are present in star-forming regions and how much of each molecule is there, and to explain the answers. The explanations rely on us understanding all the chemical and physical processes occurring, which is almost impossible. Instead, we can make exceptionally good guesses, by combining controlled laboratory experiments which tell us about the chemistry ices undergo, with observations where we can spectroscopically identify icy material, or gas-phase molecules, and models, which provide a vital missing link between the two - taking lab data and using it to explain observations, or taking observational constrains and testing chemical processes against those observed in controlled conditions. Astronomers therefore have key molecular data needs. Observers need laboratory spectra which can be compared with observations to extract information regarding the chemical constituents of ice in star-forming regions; modellers need constraints on which ice constituents to start their modelling process from, and then descriptions of all the chemical processes these ices undergo - data which can only be provided by laboratory experiments. This means that all research in this field is reliant on good quality, validated chemical reaction data and ice spectra. The aim of our proposal is threefold (a) to provide an open-source python library of astronomical software to astronomers which takes laboratory spectra of ices in whatever format and converts it to a form where the data can be compared with observations, and then uses these data to extract the ice constituents (b) input the constraints on ice constituents determined from observation (using lab data) into models that can identify the key physical and chemical parameters that must have existed for such ices to evolve generating a 'plug-in' programme to execute this for other modelling users and (c) link ice constituents and chemical conditions back to gas-phase species detected in star-forming regions. In addition, the project will allow us scope to identify where key laboratory data is currently missing from the needs identified by observers and modellers, and initiate the process to add this data to pan-European efforts on spectra and chemical reaction databases which are then validated and standardised for broader use in the scientific community.

Astronomy and Planetary Sciences at the Open University

RoleStart dateEnd dateFunding source
Co-investigator01/Apr/201431/Mar/2017STFC (Science & Technology Facilities Council)
The aim of our programme in Astronomy & Planetary Science at the Open University (APSOU) is to carryout detailed investigations of the origin and evolution of galaxies, stars and planets with a special emphasis on our own Solar System through a combination of observation, simulation, laboratory analysis and theoretical modelling. Our research is divided into two broad areas, reflecting the historical research strengths. This research programme is well-matched to both nationally- and internationally-agreed research imperatives. In its final report, A Science Vision for European Astronomy2, Astronet’s Science Working Group identified four broad areas of strategic importance; our research covers major topics within each of these areas. APSOU projects also map onto two of the four Science Challenges that form STFC’s Road Map3 for science (‘How did the universe begin and how is it evolving?’ and ‘How do stars and planetary systems develop and is life unique to our planet?’). The present APSOU programme comprises 20 projects (labelled A to T), of which 6 are for consideration by the Astronomy Observation (AO) panel, 1 for Astronomy Theory (AT), and 13 for the Planetary Studies (PL) panel. The AO projects cover the breadth of the 7 themes recognised as UK strengths in the report of STFC’s Astronomy Advisory Panel (AAP), whilst the 13 PL projects are directed towards answering questions raised in two of the three themes identified as UK strengths in the roadmap of STFC’s Solar System Advisory Panel (SSAP)4.

Publications

Using the C-O stretch to unravel the nature of hydrogen bonding in low-temperature solid methanol-water condensates (2016)
Dawes, Anita; Mason, Nigel and Fraser, Helen J.
Physical Chemistry Chemical Physics, 18 (pp. 1245-1257)
Diamond heat sinking of terahertz antennas for continuous-wave photomixing (2012-12-21)
Ackemann, T.; Alduraibi, M.; Campbell, S.; Keatings, S.; Luke Sam, P.; Fraser, H.; Arnold, A. S.; Riis, E. and Missous, M.
Journal of Applied Physics, 112, Article 123109(12)
Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at submonolayer and multilayer coverages (2012-03)
Noble, J. A.; Congiu, E.; Dulieu, F. and Fraser, H. J.
Monthly Notices of the Royal Astronomical Society, 421(1) (pp. 768-779)
AKARI observations of ice absorption bands towards edge-on young stellar objects (2012-02)
Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J; Tamura, M.; Kandori, R.; Kawamura, A. and Ueno, M.
Astronomy & Astrophysics, 538, Article A57
CO2 formation in quiescent clouds: an experimental study of the CO + OH Pathway (2011-07)
Noble, J. A.; Dulieu, F.; Congiu, E. and Fraser, H. J.
Astrophysical Journal, 735(2) (p 121)
Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains (2010-07)
Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J. and Rutten, F. J. M.
Journal of Vacuum Science and Technology A, 28(4) (pp. 799-806)
Microgravity experiments on the collisional behavior of saturnian ring particles (2010-04)
Heißelmann , Daniel; Blum, Jürgen; Fraser, Helen J. and Wolling, Kristin
Icarus, 206(2) (pp. 424-430)
A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures (2009-07)
Salter, D. M.; Heißelmann, D.; Chaparro, G.; van der Wolk, G.; Reißaus, P.; Borst, A. G.; Dawson, R. W.; de Kuyper, E.; Drinkwater, G.; Gebauer, K.; Hutcheon, M.; Linnartz, H.; Molster, F. J.; Stoll, B.; van der Tuijn, P. C.; Fraser, H. J. and Blum, J.
Review of Scientific Instruments, 80(7) (p 74501)
The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA (2009-03-01)
Swinyard, Bruce; Nakagawa, Takao; The Spica Consortium, including; Serjeant, Stephen and Fraser, Helen
Experimental Astronomy, 23(1) (pp. 193-219)
The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA (2009-03)
Swinyard, Bruce; Nakagawa, Takao; SPICA Consortium, ; Serjeant, Stephen and Fraser, Helen
Experimental Astronomy, 23 (pp. 193-219)
The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. II. CO2 (2008-05)
Pontoppidan, Klaus M.; Boogert, A. C. A.; Fraser, Helen J.; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Lahuis, Fred; Öberg, Karin I.; Evans II, Neal J. and Salyk, Colette
Astrophysical Journal, 678(2) (pp. 1005-1031)
Desorption of hot molecules from photon irradiated interstellar ices (2008-02)
Thrower, J. D.; Burke, D. J.; Collings, M. P.; Dawes, A.; Holtom, P. D.; Jamme, F.; Kendall, P.; Brown, W. A.; Clark, I. P.; Fraser, H. J.; McCoustra, M. R. S.; Mason, N. J. and Parker, A. W.
Astrophysical Journal, 673(2) (pp. 1233-1239)
The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. I. H2O and the 5-8 μm bands (2008)
Boogert, A. C. A.; Pontoppidan, K. M.; Knez, C.; Lahuis, F.; Kessler-Silacci, J.; van Dishoeck, E. F.; Blake, G. A.; Augereau, J. -C.; Bisschop, S. E.; Bottinelli, S.; Brooke, T. Y.; Brown, J.; Crapsi, A.; Evans, N. J.; Fraser, H. J.; Geers, V.; Huard, T. L.; Jørgensen, J. K.; Öberg, K. I.; Allen, L. E.; Harvey, P. M.; Koerner, D. W.; Mundy, L. G.; Padgett, D. L.; Sargent, A. I. and Stapelfeldt, K. R.
Astrophysical Journal, 678(2) (pp. 985-1004)
Surface science investigations of photoprocesses in model interstellar ices (2008)
Thrower, J. D.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. D.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Clark, I. P. and Parker, A. W.
Journal of Vacuum Science and Technology A, 26(4) (pp. 919-924)
Photodesorption of CO ice (2007-06-10)
Öberg, Karin I.; Fuchs, Guido W.; Awad, Zainab; Fraser, Helen J.; Schlemmer, Stephan; Van Dishoeck, Ewine F. and Linnartz, Harold
Astrophysical Journal Letters, 662(1) (L23-L26)
Desorption of CO and O2 interstellar ice analogs (2007-05)
Acharyya, K.; Fuchs, G. W.; Fraser, H. J.; van Dishoeck, E. F. and Linnartz, H.
Astronomy & Astrophysics, 466(3) (pp. 1005-1012)
Effects of CO2 on H2O band profiles and band strengths in mixed H2O : CO2 ices (2007-02-02)
Öberg, K. I.; Fraser, H. J.; Boogert, A. C. A.; Bisschop, S. E.; Fuchs, G. W.; van Dishoeck, E. F. and Linnartz, H.
Astronomy & Astrophysics, 462(3) (pp. 1187-1198)
A 3-5 μ m VLT spectroscopic survey of embedded young low mass stars I - Structure of the CO ice (2006-09-04)
Pontoppidan, K. M.; Fraser, H. J.; Dartois, E.; Thi, W.F.; van Dishoeck, E. F.; Boogert, A. C. A.; d'Hendecourt, L.; Tielens, A. G. G. M. and Bisschop, S. E.
Astronomy & Astrophysics, 408(3) (pp. 981-1007)
Infrared spectroscopy of solid CO-CO2 mixtures and layers (2006-05-04)
van Broekhuizen, F. A.; Groot, I. M. N.; Fraser, H. J.; van Dishoeck, E. F. and Schlemmer, S.
Astronomy & Astrophysics, 451(2) (pp. 723-731)
Desorption rates and sticking coefficients for CO and N2 interstellar ices (2006-04)
Bisschop, S. E.; Fraser, H. J.; Öberg, K. I.; van Dishoeck, E. F. and Schlemmer, S.
Astronomy & Astrophysics, 449(3) (pp. 1297-1309)
VLT-ISAAC 3-5 μm spectroscopy of embedded young low-mass stars: III. Intermediate-mass sources in Vela (2006-04)
Thi, W.-F.; van Dishoeck, E. F.; Dartois, E.; Pontoppidan, K. M.; Schutte, W. A.; Ehrenfreund, P.; d’Hendecourt, L. and Fraser, H. J.
Astronomy & Astrophysics, 449(1) (pp. 251-265)
Comparative studies of O2 and N2 in pure, mixed and layered CO ices (2006)
Fuchs, Guido W.; Acharyya, Kinsuk; Bisschop, Suzanne E.; Öberg, Karin I.; van Broekhuizen, Fleur A.; Fraser, Helen J.; Schlemmer, Stephan; van Dishoeck, Ewine F. and Linnartz, Harold
Faraday Discussions, 133 (pp. 331-345)
A 3-5 μm VLT spectroscopic survey of embedded young low mass stars II - Solid OCN- (2005-10-01)
van Broekhuizen, F. A.; Pontoppidan, K. M.; Fraser, H. J. and van Dishoeck, E. F.
Astronomy & Astrophysics, 441(1) (pp. 249-260)
The spatial distribution of ices in star-forming regions (2005-08)
Pontoppidan,, K. M.; van Dishoeck, E. F.; Dartois, E.; Fraser, H. J.; Banhidi, Z.; Jørgensen, J. K. and c2d team,
Proceedings of the International Astronomical Union, 1(S231) (pp. 319-320)
Probing the surfaces of interstellar dust grains: the adsorption of CO at bare grain surfaces (2005-02)
Fraser, Helen J.; Bisschop, Suzanne E.; Pontoppidan, Klaus M.; Tielens, Alexander G. G. and van Dishoeck, Ewine F. Van
Monthly Notices of the Royal Astronomical Society, 356(4) (pp. 1283-1292)
Competition between CO and N2 desorption from interstellar ices (2005)
Öberg, K. I.; van Broekhuizen, F.; Fraser, H. J.; Bisschop, S. E.; van Dishoeck, E. F. and Schlemmer, S.
Astrophysical Journal Letters, 621(1) (L33-L36)
Adsorption of CO on amorphous water-ice surfaces (2004-08-02)
Al-Halabi, A.; Fraser, H. J.; Kroes, G. J. and van Dishoeck, E. F.
Astronomy & Astrophysics, 422(3) (pp. 777-791)
Mobility of haloforms on ice surfaces (2004-02)
Grecea, M. L.; Backus, E. H. G.; Fraser, H. J.; Pradeep, T.; Kleyn, A. W. and Bonn, M.
Chemical Physics Letters, 385(3-4) (pp. 244-248)
The making of Stars ‘R’ Us! (2004)
Viti, Serena; Brown, Wendy; McCoustra, Martin; Fraser, Helen; Mason, Nigel and Massey, Robert
Astronomy & Geophysics, 45(6) (pp. 6.22-6.24)
SURFRESIDE: a novel experiment to study surface chemistry under interstellar and protostellar conditions (2004)
Fraser, H. J. and van Dishoeck, E. F.
Advances in Space Research, 33(1) (pp. 14-22)
Using laboratory studies of CO-H2O ices to understand the non-detection of a 2152 cm-1 (4.647 µm) band in the spectra of interstellar ices (2004)
Fraser, Helen J.; Collings, Mark P.; Dever, John W. and McCoustra, Martin R. S.
Monthly Notices of the Royal Astronomical Society, 353(1) (pp. 59-68)
A 3-5 μm VLT spectroscopic survey of embedded young low mass stars I : structure of the CO ice (2003-09)
Pontoppidan, K. M.; Fraser, H. J.; Dartois, E.; Thi, W.-F.; van Dishoeck, E. F.; Boogert, A. C. A.; d’Hendecourt, L.; Tielens, A. G. G. M. and Bisschop, S. E.
Astronomy & Astrophysics, 408(3) (pp. 981-1007)
Origin and Evolution of Ices in Star-Forming Regions: A VLT-ISAAC 3-5 microns Spectroscopic Survey (2003-09)
van Dishoeck, E. F.; Dartois, E.; Pontoppidan, K. M.; Thi, W. F.; D'hendecourt, L.; Boogert, A. C. A.; Fraser, H. J.; Schutte, W. F. and Tielens, A. G. G.
The Messenger, 113 (pp. 49-55)
Formation of a CO-CH4 complex in thin solid films below 50 K (2003-08-29)
Alsindi, W. Z.; Gardner, D. O.; van Dishoeck, E. F. and Fraser, H. J.
Chemical Physics Letters, 378(1-2) (pp. 178-184)
Solid-state astrochemistry in star-forming regions (2003-08)
Fraser, Helen; Williams, David; Sims, Ian; Richards, Anita and Yates, Jeremy
Astronomy & Geophysics, 44(4) (pp. 4.29-4.33)
Physics and chemistry of icy particles in the universe: answers from microgravity (2003-06)
Ehrenfreund, P.; Fraser, H. J.; Blum, J.; Cartwright, J. H. E.; García-Ruiz, J. M.; Hadamcik, E.; Levasseur-Regourd, A. C.; Price, S.; Prodi, F. and Sarkissian, A.
Planetary And Space Science, 51(7-8) (pp. 473-494)
Carbon monoxide entrapment in interstellar ice analogs (2003-02)
Collings, M. P.; Dever, J. W.; Fraser, H. J.; McCoustra, M. R. S. and Williams, D. A.
Astrophysical Journal, 583(2) (pp. 1058-1062)
Laboratory studies of the interaction of carbon monoxide with water ice (2003)
Collings, M. P.; Dever, J. W.; Fraser, H. J. and McCoustra, M. R. S.
Astrophysics and Space Science, 285(3-4) (pp. 633-659)
The chemistry of star formation (2002-08)
Ward-Thompson, Derek; Fraser, Helen and Rawlings, Jonathan
Astronomy & Geophysics, 43(4) (pp. 26-27)
The molecular universe (2002-04)
Fraser, Helen J.; McCoustra, Martin R. S. and Williams, David A.
Astronomy & Geophysics, 43(2) (pp. 10-18)
Laboratory surface astrophysics experiment (2002)
Fraser, Helen J.; Collings, Mark P. and McCoustra, Martin R. S.
Review of Scientific Instruments, 73(5) (pp. 2161-2170)
Thermal desorption of water ice in the interstellar medium (2001-11)
Fraser, Helen J.; Collings, Mark; McCoustra, Martin R. S. and Williams, David A.
Monthly Notices of the Royal Astronomical Society, 327(4) (pp. 1165-1172)
2D mapping of ice species in molecular cores* (2010-11)
Noble, Jennifer A.; Fraser, H. J.; Pontoppidan, K. M.; Aikawa, Y. and Sakon, I.
In: Corbett, Ian ed. Highlights of Astronomy . Proceedings of the International Astronomical Union Symposia and Colloquia (pp. 730-730)
ISBN : 9781107005334 | Publisher : Cambridge University Press | Published : Cambridge
Probing the chemistry of molecular cores: 2.5-5 μm AKARI Grism Spectroscopy of Young Stellar Objects in B35A (2009-12)
Noble, Jennifer A.; Aikawa, Yuri; Fraser, Helen J.; Pontoppidan, Klaus M. and Sakon, Itsuki
In: Onaka, Takashi; White, Glenn; Nakagawa, Takao and Yamamura, Issei eds. AKARI, a Light to Illuminate the Misty Universe: Proceedings of a Conference held at Fukutake Hall, the University of Tokyo, Tokyo, Japan, 16-19 February 2009 . Astronomical Society of the Pacific Conference Series (418) (pp. 411-414)
ISBN : 978-1-58381-716-2 | Publisher : Astronomical Society of the Pacific | Published : San Francisco, CA
Observations of interstellar and circumstellar ice (2009-12)
Aikawa, Y.; Noble, J. A.; Sakon, I.; Kamuro, D.; Irimichi, N.; Pontoppidan, K.M.; Fraser, H.; Tamura, M.; Terada, H. and Ueno, M.
In: Onaka, Takashi; White, Glenn J.; Nakagawa, Takao and Yamamura, Issei eds. AKARI, a Light to Illuminate the Misty Universe. Astronomical Society of the Pacific Conference Series (418) (pp. 47-55)
ISBN : 978-1-58381-716-2 | Publisher : Astronomical Society of the Pacific | Published : San Francisco, CA
Ices in the universe: answers from microgravity (2005-06)
Fraser, H. J.; Ehrenfreund, P.; Blum, J.; Cartwright, J. H. E.; Hadamcik, E.; Levasseur-Regourd, A. C.; Price, S.; Prodi, F.; Sarkissan, A. and Seurig, R.
In: Wilson, Andrew ed. Topical Teams in Life & Physical Sciences: Towards New Research Applications in Space. ESA Special Publication (1281) (pp. 52-76)
ISBN : 92-9092-974-X | Publisher : ESA Publications Division, ESTEC | Published : Noordwijk, The Netherlands
Implications of ice morphology for comet formation (2005-01)
Collings, M. P.; Dever, J. W.; McCoustra, M. R. S. and Fraser, H. J.
In: Engvold, Oddbjørn ed. Highlights of Astronomy: (pp. 491-494)
ISBN : 9781583811894 | Publisher : Astronomical Society of the Pacific, | Published : San Francisco, CA
AKARI observations of ice absorption bands towards edge-on YSOs (2011-05)
Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A. and Ueno, M.
In : IAU Symposium 280: The Molecular Universe (30 May - 3 June 2011, Toledo, Spain)
Experimental studies of the collisional properties of Saturnian ice particles (2009-09)
Heißelmann , D.; Blum , J.; Fraser, H. J. and Wolling , K.
In : European Planetary Science Congress 2009 (EPSC 2009) (13-18 September 2009, Postdam, Germany)
2D mapping of ice species in molecular cores (2009-08)
Noble, Jennifer A.; Fraser, H. J.; Pontoppidan, K. M.; Aikawa, Y. and Sakon, I.
In : 27th IAU General Assembly (03-14 August 2009, Rio de Janeiro)
Experimental studies on the collision behavior of Saturnian ice particles (2008-09)
Heißelmann , D.; Fraser, H. J. and Blum, J.
In : European Planetary Science Congress 2008 (EPSC 2008) (21-28 September 2008, Münster, Germany)
Experimental studies on the aggregation properties of ice and dust in planet-forming regions (2007-09)
Heißelmann , Daniel; Fraser, Helen J. and Blum, Jürgen
In : 58th International Astronautical Congress (24-28 September 2007, Hyderabad, India)
Spectroscopy and processing of interstellar ice analogs (2006-09)
van Dishoeck, E. F.; Acharyya, K.; Al‐Halabi, A.; Andersson, S.; Bisschop, S. E.; van Broekhuizen, F. A.; Fraser, H. J.; Fuchs, G.; Kroes, G. J.; Öberg, K. I.; Schlemmer, S. and Linnartz, H.
In : Astrochemistry - From Laboratory Studies to Astronomical Observations (18-20 December 2005, Honolulu, Hawaii (USA)) (pp. 113-121)
Laboratory experiments on interstellar ice analogs: the sticking and desorption of small physisorbed molecules (2006)
Fuchs, G. W.; Acharyya, K.; Bisschop, S. E.; Öberg, K. I.; van Broekhuizen, F. A.; Fraser, H. J.; Schlemmer, S.; van Dishoeck, E. F. and Linnartz, H.
In : NASA Laboratory Astrophysics Workshop (14-16 February 2006, Las Vegas, Nevada, UK)
CO chemisorbed on bare grain surfaces: the potential for heterogeneous chemistry (2005)
Fraser, Helen J.; Bisschop, Suzanne E.; Pontoppidan, Klaus M.; van Broekhuizen, Fleur and van Dishoeck, Ewine
In : IAUS 231: Astrochemistry Throughout the Universe: Recent Successes and Current Challenges (29 August-2 September 2005, Monterey, CA, USA)
The behavior of N2 and O2 in pure, mixed or layered CO ices (2005)
Bisschop, Suzanne E.; Fraser, Helen; Fuchs, Guido; Öberg, Karin I.; Acharyya, Kinsuk; van Broekhuizen, Fleur; Schlemmer, Stephan and van Dishoeck, Ewine F.
In : IAUS 231: Astrochemistry Throughout the Universe: Recent Successes and Current Challenges (29 August-2 September 2005, Monterey, CA, USA)
Gas-grain interactions and chemical influences on star forming regions (2004)
Fraser, H. J.
In : 4th Cologne-Bonn-Zermatt-Symposium The Dense Interstellar Medium in Galaxies (22–26 September 2003, Zermatt, Switzerland)
Results from a VLT/ISAAC survey of ices and gas around young stellar objects (2003)
Pontoppidan, K. M.; Fraser, H.; Schöier, F. L.; Dartois, E.; Thi, W. F. and van Dishoeck, E. F.
In : SFChem 2002: Chemistry as a Diagnostic of Star Formation (21-23 August 2002, Waterloo, Canada)
Ice chemistry in space (2003)
Ehrenfreund, Pascale and Fraser, Helen
In : Solid state astrochemistry. Proceedings of the NATO Advanced Study Institute on Solid State Astrochemistry (5-15 June 2000, Erice, Sicily) (pp. 317-356)
Laboratory surface science: the key to the gas-grain interaction (2002-11)
Collings, M. P.; Dever, J. W.; Fraser, H. J. and McCoustra, M. R. S.
In : NASA Laboratory Astrophysics Workshop (p 192)
Physico-chemistry of ices in space: from Earth to the ISS to the solar system and beyond (2002)
Blum, J.; Ehrenfreund, P.; Fraser, H.; Garcia Ruiz, J.; Hadamcik, E.; Levasseur-Regourd, A.; Sarkissan, A.; Price, S.; Prodi, F. and Williams, D.
In : 34th COSPAR Scientific Assembly, The Second World Space Congress (10-19 October, 2002, Houston, TX, USA.)
A hot core laboratory (2002)
van Broekhuizen, Fleur A.; Fraser, Helen J.; Schutte, Willem A.; de Kuijper, Ewie and van Dishoeck, Ewine F.
In : Chemistry as a Diagnostic of Star Formation (21-23 August 2002, Waterloo, Canada) (pp. 434-436)
Skating on thin ice: surface chemistry under interstellar conditions (2002)
Fraser, H.; van Dishoeck, E. and Tielens, X.
In : 34th COSPAR Scientific Assembly (10-19 October 2002, Houston, TX)
The composition of debris around HD 12039: water from asteroids? (2007-05)
Greaves, Jane; Fraser, Helen; Lisse, Casey and Wyatt, Mark
Spitzer Proposal ID #40310

Meet our Academics

Head and shoulders of male OU academic

In addition to teaching on Open University modules our academics are engaged in ground breaking research that benefits individuals and society.

Request your prospectus

Request a prospectus icon

Explore our qualifications and courses by requesting one of our prospectuses today.

Request prospectus

Are you already an OU student?

Go to StudentHome